Definitions and key facts for section 4.2

The null space of an $m \times n$ matrix A, written as Nul A, is the solution set of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. In set notation

 $\operatorname{Nul} A = \{ \mathbf{x} \text{ in } \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}.$

Fact: For any $m \times n$ matrix A, Nul A is a subspace of \mathbb{R}^n .

The **column space** of an $m \times n$ matrix A, written as Col A, is set of all linear combinations of the columns of A. So if $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix}$, then

 $\operatorname{Col} A = \operatorname{Span}\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}.$

In set notation,

 $\operatorname{Col} A = \{ \mathbf{b} \text{ in } \mathbb{R}^m : \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \text{ in } \mathbb{R}^n \}$

Fact: For any $m \times n$ matrix A, Col A is a subspace of \mathbb{R}^m .

A linear transformation T from a vector space V into a vector space W is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W, such that

1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in V, and

2. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all \mathbf{u} in V and all scalars c.

The **kernel** of a linear transformation T is the set of all \mathbf{u} in V such that $T(\mathbf{u}) = \mathbf{0}$ (the zero vector in W). The **range** of T is the set of all vectors in W of the form $T(\mathbf{x})$ for some \mathbf{x} in V.

Fact: If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation with standard matrix A, then

 $\operatorname{Nul} A = \operatorname{Kernel} \operatorname{of} T$ and $\operatorname{Col} A = \operatorname{Range} \operatorname{of} T$

as $T(\mathbf{x}) = A\mathbf{x}$ for all $x \in \mathbb{R}^n$.